بررسی اهمیّت و میزان تأثیرگذاری متغیرهای اقتصادی بر نرخ ارز در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد دانشگاه الزهرا، دانشکده علوم اجتماعی و اقتصادی، توسعه اقتصادی و برنامه ریزی

2 دانشیار دانشکده علوم اجتماعی و اقتصاد دانشگاه الزهرا

چکیده

پیش‌بینی نرخ ارز یکی از مسائل مهم هر کشور است. روش‌های مرسوم پیش‌بینی و تجزیه و تحلیل آماری سری زمانی بر اساس دو فرض ایستایی و خطی بودن هستند، اما در مواردی که ویژگی خطی‌بودن صدق نکند، در عملکرد این مدل‌ها تردید ایجاد می‌شود. در این راستا، شبکه‌های عصبی مصنوعی از قابلیت بالایی در مدل‌سازی فرآیندهای تصادفی و پیچیده و پیش‌بینی مسیرهای غیرخطی پویا برخوردارند. در این مقاله، با استفاده از یک شبکه عصبی با رویکرد بنیادی، روند تغییرات نرخ ارز را بر اساس متغیرهای اقتصادی مؤثر بر آن مانند شاخص قیمت مصرف­کننده در ایران و آمریکا، ارزش صادرات و واردات، قیمت نفت و قیمت طلا را مدل‌سازی کرده و با تحلیل حساسیت میزان تأثیرگذاری هریک از متغیرها را ارزیابی کرده‌ایم. با استفاده از نتایج مدل می­توان اظهار داشت که مدل، بیشترین حساسیت را نسبت به شاخص قیمت مصرف­­کننده از خود نشان می­دهد. همچنین قیمت طلا، صادرات، قیمت نفت و واردات به ترتیب عوامل دیگر مؤثر بر روند نرخ ارز در ایران هستند. 

کلیدواژه‌ها


عنوان مقاله [English]

The importance and effects of economic variables on exchange rate in case of Iran

نویسندگان [English]

  • maryam ebrahimi 1
  • mehdi pedram 2
1 Master of Science in Alzahra University, Faculty of Social and Economic Sciences, Economic Development and Planning
2 Associate Professor, Faculty of Social Sciences and Economics, Alzahra University
چکیده [English]

This paper investigates model estimation and forecasting of exchange rate using artificial neural networks. Recent studies have shown the classification and prediction power of the neural networks. It has been demonstrated that a neural network can approximate any continuous function. In this research, in a technical approach, ARIMA and artificial neural networks have been used for short-term forecast of daily USD to Rial exchange rate. ANN is employed in training and learning processes and then the forecast performance is measured making use of two common loss functions. The comparison demonstrates that an artificial neural network performs far better than ARIMA, with an error rate of about half.
Thereafter, in a fundamental approach via another neural network the effects of some of the most important economic variables on exchange rate prediction in a long-term sense are studied. By sensitivity analysis, the importance and the weight of each economic variable on exchange rate is calculated. The results show that it is possible to estimate a model to forecast the value of exchange rate even by having access to a limited subset of data.

کلیدواژه‌ها [English]

  • forecast
  • model approximation
  • Exchange Rate
  • Artificial neural networks
  • crude oil
  • gold
  • Inflation Rate
  • sensitivity analysis

-        پایگاه اطلاع رسانی بانک مرکزی جمهوری اسلامی ایران.www.cbi.ir

-        پایگاه اطلاع رسانی گمرک جمهوری اسلامی ایرانwww.irica.gov.ir

-        درگاهی، حسن و انصاری، رضا. (1387). بهبود مدل‌سازی شبکه‌های عصبی در پیش‌بینی نرخ ارز با به‌کارگیری شاخص‌های تلاطم. تحقیقات اقتصادی، شماره 85. ص 117-144.

-        زمان‌زاده، حمید. (1391). مدیریت نرخ ارز در اقتصاد ایران. دنیای اقتصاد، پنج‌شنبه 22 تیر.

-        مشتاق، مصطفی. (1379). تبدیلات ارزی و تعیین نرخ ارز. مجله بانک و اقتصاد، شماره 12، ص 60-69.

-        Azoff, M. E. (1994). Neural Network Timeseries Forcasting of Financial Markets.  Chichester; New York, Wiley.

-        Bureau of Labor Statistics Website : www.bls.gov/cpi/

-        Dunis, CH. Laws, J. Kalathanasopoulos, A. (2008). Modelling and Tradingthe Greek Stock Market with Mixed Neural Network Models. CIBEF.

-        Episcopos, A. Davis, J. (2001). Prediction Returns on Canadian Exchange Rates with Artifificial Neural Networks and EGARCH Models. Neural computing & Application, Vol.4, No.3, pp. 168-174.

-        Hu & Tsoukalas. (1999). Combining Conditional Volatility Forecast Using Neural Networks: an Application to the EMS Exchange Rates. Elsevier Journal of International Financial Markets Institutions and Money, Vol.9, Issue 4, pp. 407-422.

-        Kuan, C.M. & White, H., (1991). Strong Convergence of Recursive M-Estimators for Models with Dynamic Latent Variables. Papers 25, Stanford - Institute for Thoretical Economics.

-        Lisi, F. Schiavo, R. (1999). A Comparision between Neural Networks and Chaotic Models for Exchang Rate Prediction. Computational Statistics & Data Analysis, Vol.30, No.1, pp. 87-102.

-        Pacelli, V.Azzollini, M. (2011). An Artificial Neural Network Model to Forecast Exchange Rates. Journal of International Learning Systems and Applications, Vol.3, No.1, pp. 57-69.

-        OPEC Website : www.opec.org

-        Pedram M, Ebrahimi M. (2014). Exchange Rate Model Approximation, Forecast and Sensitivity Analysis by Neural Networks, Case Of Iran. Bussiness and Economc Research, Vol.4, No.2. pp.49-62.

-        Pradhan, R. (2010). Forcasting Exchange Rate in India: An Application of Artificial Neural Network Model. Journal of Mathematics research, Vol.2, No.4, pp 111-117.

-        Stokes, A. (2011). Forcasting Exchange Rates Using Neural Networks: a Traders Approach. Student Theses & Publication, 205.

-        USA Gold Website: http://www.usagold.com/reference/prices

-        Yao, J. Tan, Ch. (2000). A Case Study on Using Neural Networks to Perform Technical Forcasting of Forex. Neurocomputing, Vol.34, No.1, pp. 79-98.